Differences in the pharmacological activation of visual opsins.
نویسندگان
چکیده
Opsins, like many other G-protein-coupled receptors, sustain constitutive activity in the absence of ligand. In partially bleached rods and cones, opsin's activity closes cGMP-gated channels and produces a state of "pigment adaptation" with reduced sensitivity to light and accelerated flash response kinetics. The truncated retinal analogue, beta-ionone, further desensitizes partially bleached green-sensitive salamander rods, but enables partially bleached red-sensitive cones to recover dark-adapted physiology. Structural differences between rod and cone opsins were proposed to explain the effect. Rods and cones, however, also contain different transducins, raising the possibility that G-protein type determines the photoreceptor-specific effects of beta-ionone. To test the two hypotheses, we applied beta-ionone to partially bleached blue-sensitive rods and cones of salamander, two cells that couple the same cone-like opsin to either rod or cone transducin, respectively. Immunocytochemistry confirmed that all salamander rods contain one form of transducin, whereas all cones contain another. beta-Ionone enhanced pigment adaptation in blue-sensitive rods, but it also did so in blue- and UV-sensitive cones. Furthermore, all recombinant salamander rod and cone opsins, with the exception of the red-sensitive cone opsin, activated rod transducin upon the addition of beta-ionone. Thus opsin structure determines the identity of beta-ionone as an agonist or an inverse agonist and in that respect distinguishes the red-sensitive cone opsin from all others.
منابع مشابه
Activation of Transducin by Bistable Pigment Parapinopsin in the Pineal Organ of Lower Vertebrates
Pineal organs of lower vertebrates contain several kinds of photosensitive molecules, opsins that are suggested to be involved in different light-regulated physiological functions. We previously reported that parapinopsin is an ultraviolet (UV)-sensitive opsin that underlies hyperpolarization of the pineal photoreceptor cells of lower vertebrates to achieve pineal wavelength discrimination. Alt...
متن کاملMutation of a conserved proline disrupts the retinal-binding pocket of the X-linked cone opsins.
PURPOSE To test the effects of disruption of a conserved proline in the green cone opsin molecule on light-activated isomerization, transducin activation, protein accumulation, glycosylation, and transport. METHODS Stable cell lines were established by transfecting EBNA-293 cells with a plasmid containing wild-type or mutant (P307L) green opsin cDNA molecules. The proteins were induced by cul...
متن کاملGRK1-dependent phosphorylation of S and M opsins and their binding to cone arrestin during cone phototransduction in the mouse retina.
The shutoff mechanisms of the rod visual transduction cascade involve G-protein-coupled receptor (GPCR) kinase 1 (GRK1) phosphorylation of light-activated rhodopsin (R*) followed by rod arrestin binding. Deactivation of the cone phototransduction cascade in the mammalian retina is delineated poorly. In this study we sought to explore the potential mechanisms underlying the quenching of the phot...
متن کاملVisual Tuning May Boost African Cichlid Diversity
African cichlid fish form new species faster than any other vertebrates, with hundreds of species evolving within the last 2 million years in Lake Malawi and within the last 120,000 years in Lake Victoria. This rapid speciation makes cichlids good models for elucidating the genetic mechanisms behind biodiversity. Vision may play a key role in cichlid evolution, adapting them to forage for new f...
متن کاملPredicting peak spectral sensitivities of vertebrate cone visual pigments using atomistic molecular simulations
Vision is the dominant sensory modality in many organisms for foraging, predator avoidance, and social behaviors including mate selection. Vertebrate visual perception is initiated when light strikes rod and cone photoreceptors within the neural retina of the eye. Sensitivity to individual colors, i.e., peak spectral sensitivities (λmax) of visual pigments, are a function of the type of chromop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Visual neuroscience
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2006